f07 — Linear Equations (LAPACK) f07uec

NAG C Library Function Document

nag_dtptrs (f07uec)

1 Purpose

nag_dtptrs (f07uec) solves a real triangular system of linear equations with multiple right-hand sides,
AX =B or A"X = B, using packed storage.

2 Specification

#include <nag.h>
#include <nagfO7.h>

void nag_dtptrs (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans,
Nag_DiagType diag, Integer n, Integer nrhs, const double ap[], double b[],
Integer pdb, NagError *fail)

3 Description

nag_dtptrs (f07uec) solves a real triangular system of linear equations AX = B or A'X = B using packed
storage.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Higham N J (1989) The accuracy of solutions to triangular systems SIAM J. Numer. Anal. 26 1252—1265

5 Arguments
1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag ColMajor.

2: uplo — Nag_UploType Input
On entry: indicates whether 4 is upper or lower triangular.
uplo = Nag_Upper
A is upper triangular.
uplo = Nag_Lower
A is lower triangular.

Constraint: uplo = Nag Upper or Nag Lower.

3: trans — Nag_TransType Input
On entry: indicates the form of the equations.
trans = Nag NoTrans

The equations are of the form 4AX = B.

[NP3660/8] f07uec. 1

f07uec NAG C Library Manual

trans = Nag_ Trans or Nag ConjTrans

The equations are of the form A"X =B.

Constraint: trans = Nag NoTrans, Nag Trans or Nag ConjTrans.

4 diag — Nag DiagType Input
On entry: indicates whether 4 is a non-unit or unit triangular matrix.
diag = Nag NonUnitDiag
A is a non-unit triangular matrix.
diag = Nag UnitDiag

A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be
L.

Constraint: diag = Nag_NonUnitDiag or Nag_UnitDiag.

5: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

6: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

7: ap[dim] — const double Input
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+ 1)/2).

On entry: the n by n triangular matrix 4, packed by rows or columns. The storage of elements a;
depends on the order and uplo arguments as follows:

if order = Nag ColMajor and uplo = Nag Upper,

a;; is stored in ap[(j — 1) xj/2+i—1], for i <j;

if order = Nag_ColMajor and uplo = Nag_Lower,

a;; is stored in ap[(2n —j) x (j —1)/24i—1], for i > j;

if order = Nag_RowMajor and uplo = Nag_Upper,
a; is stored in ap[(2n — i) x (i —1)/2 +j — 1], for i <
if order = Nag RowMajor and uplo = Nag_Lower,
a; is stored in ap[(i — 1) x i/2 4 — 1], for i > j.
8: b[dim] — double Input/Output
Note: the dimension, dim, of the array b must be at least

max(1, pdb x nrhs) when order = Nag_ColMajor;
max(1,pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i,j)th element of the matrix B is stored in b[(j — 1) x pdb + i — 1].
If order = Nag_RowMajor, the (i,j)th element of the matrix B is stored in b[(i — 1) x pdb +j — 1].
On entry: the n by r right-hand side matrix B.

On exit: the n by r solution matrix X.

9: pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

f07uec.2 [NP3660/8]

f07 — Linear Equations (LAPACK) f07uec

Constraints:
if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).
10: fail — NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdb = (value).
Constraint: pdb > 0.
NE_INT 2

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_SINGULAR

The matrix A4 is singular.

7 Accuracy

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham
(1989).

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations (4 + E)x = b, where

[E] < c(n)eld],
¢(n) is a modest linear function of n, and € is the machine precision.

If X is the true solution, then the computed solution x satisfies a forward error bound of the form
———> < ¢(n)cond(4,x)e, provided c¢(n)cond(4,x)e <1,

where cond(4,x) = |||A71}|A\|x|||ac/||x||OC

[NP3660/8] f07uec.3

f07uec NAG C Library Manual

Note that cond(4,x) < cond(4) = || |A*1‘|A|Hoo < Kyo(A); cond(4,x) can be much smaller than cond(A4)

and it is also possible for cond(AT) to be much larger (or smaller) than cond(4).

Forward and backward error bounds can be computed by calling nag_dtprfs (f07uhc), and an estimate for
Koo(A) can be obtained by calling nag dtpcon (f07ugc) with norm = Nag_InfNorm.
8 Further Comments

The total number of floating-point operations is approximately n’r.

The complex analogue of this function is nag_ztptrs (f07usc).

9 Example
To solve the system of equations AX = B, where
430 0.00 0.00 0.00 —12.90 -21.50
4= —-3.96 —4.87 0.00 0.00 nd B— 16.75 14.93
- 040 031 -8.02 0.00 a | —17.55 6.33 |’
—-0.27 0.07 —-5.95 0.12 —11.04 8.09

using packed storage for A.

9.1 Program Text

/* nag_dtptrs (f07uec) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer ap_len, i, j, n, nrhs, pdb;
Integer exit_status=0;
Nag_UploType uplo_enum;

NagError fail;
Nag_OrderType order;
/* Arrays */

char uplo([2];
double *ap=0, *b=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) apl[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) apl[(2*n-J)*(J-1)/2 + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) apl[(2*n-I)*(I-1)/2 + J - 1]
#define B(I,J) b[(I-1)*pdb + T - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("nag_dtptrs (f07uec) Example Program Results\n\n");

07uec.4 [NP3660/8]

f07 — Linear Equations (LAPACK) f07uec

/* Skip heading in data file #*/
Vscanf ("$*[*\n] ");
Vscanf ("%$1d%1d%*["\n] ", &n, &nrhs);
ap_len = n*(n+l)/2;

#ifdef NAG_COLUMN_MAJOR

pdb = n;
#else

pdb = nrhs;
#endif

/* Allocate memory */
if (!(ap = NAG_ALLOC(ap_len, double)) ||
! (b = NAG_ALLOC(n * nrhs, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file */
Vscanf (" ' %1s ’'%*["\n] ", uplo);
if (*(unsigned char #*)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (#*(unsigned char *)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= n; ++3)
Vscanf ("%1f", &A_UPPER(1i,j));
}
Vscanf ("s*[*\n] ");
}
else
{
for (1 = 1; 1 <= n; ++1)
{
for (3 = 1; j <= 1i; ++3)
Vscanf ("$1f", &A_LOWER(i,j));
}
Vscanf ("sx["\n] ");
}
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
Vscanf ("$1f", &B(i,3));
3

Vscanf ("$*[*\n] ");

/* Compute solution =*/
/* nag_dtptrs (f07uec).
* Solution of real triangular system of linear equations,
* multiple right-hand sides, packed storage
*/
nag_dtptrs(order, uplo_enum, Nag _NoTrans, Nag_NonUnitDiag, n,
nrhs, ap, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_dtptrs (f07uec).\n%s\n", fail.message) ;
exit_status = 1;
goto END;

}
/* Print solution */
/* nag_gen_real _mat_print (x04cac).

[NP3660/8] fO07uec.5

f07uec NAG C Library Manual

* Print real general matrix (easy-to-use)
*
/
nag_gen_real _mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs,
b, pdb, "Solution(s)", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_gen_real mat_print (x0O4cac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
3
END:
if (ap) NAG_FREE (ap);
if (b) NAG_FREE (b);

return exit_status;

}

9.2 Program Data

nag_dtptrs (f07uec) Example Program Data

4 2 :Values of N and NRHS
'L’ :Value of UPLO

4.30
-3.90 -4.87

0.40 0.31 -8.02
-0.27 0.07 -5.95 0.12 :End of matrix A

-12.90 -21.50
16.75 14.93
-17.55 6.33
-11.04 8.09 :End of matrix B

9.3 Program Results

nag_dtptrs (f07uec) Example Program Results

Solution(s)

1 2
1 -3.0000 -5.0000
2 -1.0000 1.0000
3 2.0000 -1.0000
4 1.0000 6.0000

fO07uec.6 (last) [NP3660/8]

	f07uec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	uplo
	trans
	diag
	n
	nrhs
	ap
	b
	pdb
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_SINGULAR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

